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Excited states by quantum Monte Carlo methods: Imaginary time evolution
with projection operators

D. Blume,1,2 M. Lewerenz,1 P. Niyaz,2 and K. B. Whaley1,2
1Max-Planck-Institut fu¨r Strömungsforschung, Bunsenstrasse 10, D-37073 Go¨ttingen, Germany

2Department of Chemistry, University of California, Berkeley, California 94720
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We present a Monte Carlo algorithm suitable for the calculation of excited state energies of multidimen-
sional quantum systems. Energies are extracted from a maximum entropy analysis of the imaginary time
evolution of a state prepared by application of a projection operator on an initial wave function. The imaginary
time evolution is computed with a pure diffusion Monte Carlo algorithm. The method is demonstrated on a
harmonic oscillator and several Morse oscillator test problems.@S1063-651X~97!07503-X#

PACS number~s!: 02.70.Lq, 02.50.Wp, 33.20.Tp, 36.20.Ng
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I. INTRODUCTION

Excited states play a central role in the physics and ch
istry of atoms, molecules, and clusters. Despite many effo
however, the exact theoretical description of the comp
vibrational spectrum of a system with many degrees of fr
dom in the general case of anharmonic potential surfaces
large amplitude motions has remained elusive. Normal m
descriptions that can easily handle several hundred deg
of freedom are applicable only to vibrational motions
large molecules with stiff bonds and small atomic displa
ments. Variational basis set expansions that do not make
approximations to the Hamiltonian have remained restric
to small molecules with currently up to six degrees of fre
dom @1,2# because of the computational complexity of t
problem, although they can in principle provide a large nu
ber of energy levels and corresponding wave functions.

Complementary in many ways to the exact variatio
methods developed for small systems are the stochastic
proaches collectively referred to as quantum Monte Ca
methods. These methods are ideal tools for the study of
vibrational ground state of very large systems@3–6# or the
determination of thermodynamic properties of quantum s
tems@7,8#. They have reached a very high degree of soph
tication in recent years. The extraction of information
excited states from this type of calculation has, howev
proven to be very difficult.

Successful adiabatic extensions of the diffusion quan
Monte Carlo~DMC! method have been designed for spec
problems @6,9–12#. Special methods exist for cases wi
known nodal surfaces@9,10,13–16#. Both approaches, how
ever, do not provide a general solution to the problem. Ea
attempts at successive orthogonalization@17# have remained
restricted to few degrees of freedom. Several efforts aim
at an automatic construction of nodal surfaces@18–20# have
been published recently. A promising technique that
been demonstrated to date on relatively small problems is
correlation function quantum Monte Carlo~CFMC! ap-
proach initiated by Ceperleyet al. @21–23#.

Another class of methods has been designed based o
fact that finite temperature thermodynamic data and corr
tion functions in principle contain information on the com
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plete set of bound states of any many-body system. Th
properties can be relatively easily computed with the p
integral Monte Carlo~PIMC! technique. Most of the efforts
in this class were directed towards the calculation of the r
time dynamics of quantum systems@24–30#, which requires
knowledge of the complete spectrum@31–33#. The biggest
obstacle in the practical application of these latter approac
is the extraction of a spectral density, which is similar
performing an inverse Laplace transform numerically. T
is a well known ill-posed problem.

The numerical solution of the inverse Laplace transfo
problem has been attempted in the past with least-squ
approaches@31# and various regularization methods@34–38#.
Among these techniques the regularized inverse Lap
transform using Pade´ approximations@34,39# and the method
of Brianzi et al. @37,38# appear attractive. For the prese
problem of strongly structured spectra the implicit smoo
ness assumptions of these methods turned out to be un
able, however. In practice, the maximum entropy meth
~MEM! has proven to date to be the most powerful tool
the solution of this inverse problem, and has found a h
degree of popularity@26,32,33,40,41#. A combination of fi-
nite temperature PIMC and maximum entropy data analy
has been used successfully for the description of elec
bubbles in helium@33# and oscillator chains@41#. A problem
observed in several of these applications is the increa
difficulty to provide a reliable data analysis if several pea
are present in the target spectrum. This situation beco
worse with increasing number of degrees of freedom, si
the finite temperature data always include all energy level
the system under investigation.

The method proposed in this paper was inspired b
similar approach of Carlson and Schiavilla who used Gree
function Monte Carlo~GFMC! to calculate the Euclidean
proton response@42#. Our approach extracts excited state e
ergies from a maximum entropy analysis of the imagina
time evolution of an initial state. The imaginary time evol
tion is computed with a zero temperature diffusion Mon
Carlo algorithm. Application of an additional projector o
the initial wave function allows us to restrict the number
peaks in the spectrum. One can therefore construct the c
plete spectrum by the application of a sequence of project
3664 © 1997 The American Physical Society
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55 3665EXCITED STATES BY QUANTUM MONTE CARLO . . .
However, for many of the applications which we are aimi
at, complete knowledge of the spectrum is not even requi
For example, if the goal of our calculation is the estimati
of the optical excitation spectrum of a molecule embedd
into a matrix or a cluster@4,6#, we can tailor the projector to
selectively suppress the collective excitations of the ma
in order to gain information on the matrix shift of the mo
ecule or to extract exclusively information on collective e
citations accompanying molecular excitations in the form
phonon side bands. A particularly interesting observation
the latter phenomenon has been made in electronic excita
spectra of molecules embedded into large liquid helium c
ters@43#. For such a spectroscopic application the project
operator can be, e.g., identified with the dipole opera
However, we note that our method shares with the fin
temperature versions the limitation to the calculation of
ergies only. The determination of transition matrix eleme
and other properties of excited states remains beyond
scope of the method.

The organization of the paper is as follows: Section
presents the essential features of our quantum Monte C
method and gives details on the implementation of the a
rithm. The maximum entropy method employed for the d
analysis is summarized in Sec. III. Section IV discusses
plications to several one-dimensional oscillator test proble
of increasing complexity~harmonic oscillator, Morse oscil
lators with increasing anharmonicity!, which illustrate both
the scope of the method and the effect of the choice of
ferent projectors. Section V summarizes the results and g
an outlook on future applications to realistic molecular clu
ter systems.

II. THE QUANTUM MONTE CARLO METHODS

A. General formalism

The wave function of a system,C(R,t), can be formally
written in an eigenfunction expansion@15#,

C~R,t !5(
j50

`

cjc j~R!expF2~Ej2Eref!
t

\G , ~1!

wheret is an imaginary time,Eref is an arbitrary energy shift
andEj andc j are the eigenenergies and eigenstates of
system,

Huc j&5Ej uc j&. ~2!

For sufficiently larget, only the lowest eigenstate,c0, con-
tributes toC. The standard DMC algorithm exploits th
property to project out the stationary ground state wave fu
tion using the time-dependent Schro¨dinger equation. Contri-
butions from higher excited states decay fast in compari
to contributions from lower excited states. Properties of
stationary ground state,c0, like the energy expectation valu
can be calculated after the decay process is complete@3#.

It is evident from Eq.~1! that the imaginary time depen
dence of the Monte Carlo solution during the decay pha
which is usually discarded in DMC calculations, contai
information about the complete energy spectrum,Ej2Eref .
The expectation value of the quantity
d.

d

x

f
f
on
-
n
r.
e
-
s
he

I
rlo
-
a
p-
s

f-
es
-

e

c-

n
e

e,

I ~ t !5^cTuexpF2~H2Eref!
t

\G ucT& ~3!

can be sampled from a DMC random walk by evaluating

I ~ t !5^W~ t !&, ~4!

whereW is the cumulative branching weight used in pu
DMC,

W~ t !5)
k50

N

expF2~EL~Rk!2Eref!
Dt

\ G , ~5!

and the angular brackets denote a statistical average@3#. The
Rk denote positions in configuration space and are dist
uted with the densityucTu2. cT is a trial wave function, and
EL is the local energy,EL5cT

21HcT . One normally takes
Eref close to ET for efficiency, whereET is defined by
ET5^cTuHucT&/^cTucT&. Dt is the DMC time step; the
imaginary timet is divided into a large number of small tim
steps,Dt.

The exponential energy dependence of Eq.~4! presents
serious problems, especially when the noise of the Mo
Carlo simulation is non-negligible and when we have to d
with multi exponential decays. A more sophisticated a
proach derives from writingI (t) in an integral representation
@40#,

I ~ t !5E
2`

`

(
j50

`

d~E2Ej1Eref!^cTuc j&
2exp~2tE!dE.

~6!

The Ej may then be extracted fromI (t) by performing the
inverse Laplace transform, which is, however, a known
conditioned numerical problem. Our approach is based
Eq. ~3! and Eq. ~6!, but includes an additional projection
operatorA, which allows the sequential extraction of excite
energies. Then the inverse Laplace transform is still an
posed problem but the resulting exponential decay is do
nated by only a few eigenenergies, rather than by ma
eigenenergies simultaneously.

Our derivation starts with a rate expression,k(v),

k~v!5(
f

u^c i uAuc f&u2d~Ei2Ef1\v!, ~7!

wherec i andc f are the initial and final eigenstates of th
system having energiesEi andEf , respectively. We will see
later thatA really acts as a projector. Equation~7! simplifies,
e.g., to Fermi’s golden rule expression if we identify th
projection operatorA with a coupling potentialV and in-
clude appropriate prefactors. Then we have an expression
the linewidth,G(v). McMahon and Whaley@44# have used
this modified formula to calculate energy transfer rates
doped quantum clusters.

Our first step is to take the Laplace transform of Eq.~7!,

L$k~v!%5k̃~ t !5E
0

`F(
f

u^c i uAuc f&
2u

3d~Ei2Ef1\v!Gexp~2vt !dv ~8a!
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51/\(
f

u^c i uAuc f&u2expF2~Ef2Ei !
t

\G . ~8b!

The form of Eq.~8b! suggests that we identifyt as an imagi-
nary time. We now relate this to the imaginary time prop
gation of the DMC method. Rewriting Eq.~8b! as

k̃~ t !51/\(
f

^c i uAuc f&expF2~Ef2Ei !
t

\G^c f uA1uc i&

~9!

and moving the exponential ofEf t/\ to the left yields

k̃~ t !51/\(
f

^c i uAexpF2~H2Ei !
t

\G uc f&^c f uA1uc i&,

~10!

whereH is the Hamiltonian of our system,

Huc f&5Ef uc f&. ~11!

Using closure to remove the sum over final states then res
in

k̃~ t !51/\^c i uAexpF2~H2Ei !
t

\GA1uc i&. ~12!

Thus we have employed the imaginary time Laplace tra
form in order to introduce the correspondence with a DM
propagation: see Eq.~3!. Equation~12! is identical with Eq.
~3! for A51. The crucial advantage of Eq.~12! in compari-
son to Eq.~3! is that we are able to choose an arbitra
projection operatorA, which projects on different wave func
-

lts

s-

tions. As stated earlier, this allows us to extract energy
ferences sequentially by using a sequence of suitable pro
tion operators.

With Eq. ~12! we now have an expression for energ
differences involving a matrix element evaluated over o
the initial state. This matrix element can be evaluated usin
multidimensional Monte Carlo integration for thet50 com-
ponent and a DMC walk, which propagatesA1uc i&, accord-
ing to exp@2(H2Ei)t/\#. Each configuration used for the ca
culation of the multidimensional integral is propagated
such a DMC walk. This scheme is reminiscent of the ‘‘sid
walk algorithm’’ developed for the calculation of exact e
pectation values by quantum Monte Carlo@45#. However, it
should be mentioned that our implementation is a ‘‘pur
DMC method, which allows the usual exponential grow
and decay but no branching or annihilation of DMC rando
walkers. The latter is introduced in most DMC algorithms
order to increase the computational efficiency. Howev
here we are interested in the decay of the weights as a f
tion of imaginary time, and therefore it is not advisable
‘‘artificially’’ modify these. The Monte Carlo formalism for
the determination ofk̃(t) will be described in more detail in
the following.

For convenience we use an unnormalized initial wa
function c i . Equation~12! is then rewritten with a normal-
ization factor,

k̃~ t !5
^c i uAexp@2~H2Ei !t/\#A1uc i&

\^c i uc i&
. ~13!

Now we insert closure relations forR andR8, whereR and
R8 are coordinate vectors,
k̃~ t !51/\
E dRE dR8^c i uAuR8&^R8uexp@2~H2Ei !t/\#uR&^RuA1uc i&

^c i uc i&
~14a!

51/\
E dRE dR8c i~R!A1~R!^R8uexp@2~H2Ei !t/\#uR&A~R8!c i~R8!

E dR9c i
2~R9!

. ~14b!

Multiplying the integral byc i(R)c i
21(R)51, and recognizing that

G~R8,R,t !5^R8uexpF2~H2Ei !
t

\G uR& ~15!

is the usual Green’s function, leads to

k̃~ t !51/\E dR
c i
2~R!

E dR9c i
2~R9!

A1~R!E dR8c i
21~R!G~R8,R,t !c i~R8!A~R8!. ~16!

Substituting now the importance sampling Green’s function@3#,

GI~R8,R,t !5c i
21~R!G~R8,R,t !c i~R8!, ~17!

yields
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k̃~ t !51/\E dR
c i
2~R!

E dR9c i
2~R9!

A1~R!E dR8GI~R8,R,t !A~R8!. ~18!

Equation~18! is expanded by introducing an integral over ad function,

k̃~ t !51/\E dR
c i
2~R!

*dR9c i
2~R9!

A1~R!E dR8A~R8!E dR-GI~R8,R-,t !d~R-2R!, ~19!
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which leads directly to a Monte Carlo representation. T
outer integration overR can be performed via a multidimen
sional Monte Carlo integration, where a chain of configu
tions,Rk

(0) , k51, . . . ,p, distributed with the densityuc i u2, is
sampled by using the Metropolis algorithm@46#. The inte-
gration overR8 can be realized by a DMC walk that prop
gates each initial configurationRk

(0) in imaginary time, where
the upper index (0) refers to the imaginary time,t50. The
propagated configurations,Rk8 will be labeled for notational
simplicity by Rk

(t) . With this in hand we can formulate th
Monte Carlo representation of Eq.~19!,

k̃~ t !5
1

\p (
k51

p

A1~Rk
~0!!A~Rk

~ t !!w~Rk
~ t ! ,Dt !, ~20!

wherew(Rk
(t) ,Dt) is the weight of the DMC random walke

atRk
(t) at timet @47#. The weightw(Rk

(t) ,Dt) depends on the
initial configurationRk

(0) , on the instantaneous DMC con
figurationRk

(t) , and on the finite DMC time stepDt. Now we
have an explicit expression for evaluating Eq.~13! through a
combination of a multidimensional Monte Carlo integrati
with DMC walks linked to each sampling point.

Since the initial wave functionc i has to be nodeless i
order to perform the suggested Monte Carlo algorithm
outlined above, we should use the ground state wave fu
tion c0 as the initial wave functionc i . In general, however
we do not know the exact ground state wave function a
energy. Therefore we use a trial wave functioncT , which
should approximate the exact ground state wave func
c0 as closely as possible. Additionally we normally empl
a reference energyEref instead of the exact ground state e
ergyE0. Eref should be close toE0 and a popular and effi
cient choice in DMC calculations isEref5ET . Thus, in prac-
tice Eq.~13! would give us energies relative to the referen
energyEref . In order to remove any such dependence
k(v) on Eref , we incorporate an additional normalizatio
factor. This leads to the expression

k̃~ t !5

^cTuAexp@2~H2Eref!t/\#A1ucT&

^cTucT&

^cTuexp@2~H2Eref!t/\#ucT&

^cTucT&

~21a!

5

~1/p!(
k51

p

A1~Rk
~0!!A~Rk

~ t !!w~Rk
~ t ! ,Dt !

~1/p!(
k51

p

w~Rk
~ t ! ,Dt !

,

~21b!
e

-

s
c-

d

n

f

which can easily be shown to exhibit the required indep
dence of the imaginary time signal on both the choice of
reference energy,Eref , and the scaling of the weights of th
random walkers. The initial configurationsRk

(0) are now
sampled fromucT(R)u2. This normalization is identical to
that suggested by Carlson and Schiavilla@42#, although
theirs was not motivated by the same consideration.

In principle, employingcT rather thanc0 introduces a
systematic error. This can be analyzed by performing
inverse Laplace transform of Eq.~21a!. The transform of Eq.
~21a! can be done analytically if we write the trial wav
function in an expansion in the exact eigenstates. The
wave function has to be close enough to the ground s
wave function to ensure that the coefficient of the grou
state wave function is at leastA0.5. In this situation we can
expand each component of the expansion in a series
perform the inverse Laplace transform for each term of
series. The zeroth order term of the resulting expression
k(v) is identical with the inverse Laplace transform of E
~13!, apart from a scale factor. The higher order contrib
tions result in additional peaks in the spectrum: these h
highly reduced intensity in comparison to the intensity of t
peaks resulting from the zeroth order contribution. Thus
additional normalization factor introduced in Eq.~21! pro-
vides the independence of the final expression from the
erence energy but does not change the relevant feature
the resulting spectrum. We demonstrate the influence o
trial wave function that is not equal to the exact ground st
wave function in the application to the harmonic oscillat
~see Sec. IV A!.

B. Implementation

We have to createp initial configurations, Rk
(0) ,

k51, . . . ,p, in order to evaluate Eq.~21b!. Each initial con-
figuration Rk

(0) is used as the starting configuration for
DMC walk and the value of the projection operat
A(Rk

(0)) is stored for eachk. Since we need a large numbe
p of initial configurations in order to calculatek̃(t) with high
statistical accuracy we use sets of onlyn initial configura-
tions,Rk

(0) , k51, . . . ,n, at a time and repeat this procedu
m times, wherep5nm.

Then our algorithm to evaluate Eq.~21b! is the following.
We pick a starting configurationR11

(0) . Using the Metropolis
algorithm @46# we create a chain of configuration
R11
(0) ,R12

(0) , . . . ,R1l
(0) ,R21

(0) ,R22
(0) , . . . ,R2l

(0) , . . . . The maxi-
mal valuel of the second lower index is chosen to be larg
than the autocorrelation length of the system. We shall re
to l as the skip parameter in the following. The configur
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tions Rk1
(0) , k51, . . . ,n, are therefore independent sampl

for the Monte Carlo integration and can be used as star
configurations for the DMC walk, which propagates alo
the imaginary timet. A(Rk1

(0)), k51, . . . ,n is evaluated for
each k and (1/n)(k51

n A(Rk1
(0)) is stored. The vector

A(Rk1
(0)), k51, . . . ,n is handed over to the DMC routine

The initial weights for the DMC walk are set equal to 1, b
weights are updated depending on the positionRk1

(t) . During
the DMC walk we store (1/n)(k51

n w(Rk1
(t) ,Dt) and

(1/n)(k51
n w(Rk1

(t) ,Dt)A(Rk1
(t))A(Rk1

(0)) as functions of imagi-
nary timet. We makeN DMC time steps, where the discre
DMC time stepDt has to be chosen carefully depending
the system under investigation. The accura
of the exponential decay of the DMC weights depen
strongly on the DMC time step. DMC calculations us
to simulate the stationary ground state allow an extra
lation to Dt50 from runs at severalDt since an equili-
brium state is sampled. However, we are interested h
in the exponential decay of the DMC weights, whic
are sampled from anonequilibrium state. Therefore we
are not able to make a time step extrapolation toDt50. So
we have to use a time step small enough that further red
tion does not change the result fork̃(t). The systematic time
step problem is dicussed in Sec. IV A and is illustrated
Fig. 2 for the harmonic oscillator. Once the DMC propag
tion is finished, the results for (1/n)(k51

n w(Rk1
(t) ,Dt) and

(1/n)(k51
n w(Rk1

(t) ,Dt)A(Rk1
(t))A(Rk1

(0)) as a function of time

FIG. 1. Scheme for the Monte Carlo algorithm. The multidime
sional Monte Carlo integration is shown schematically on the v
tical axis and the DMC walk is shown schematically on the ho
zontal axis. The configurationsR1l

(0) ,R2l
(0) , . . . ,Rnl

(0) are sampled
from ucT(R)u2. l is the skip parameter used for the creation
initial configurations,Rkl

(0) , k51, . . . ,n, and n is the number of
DMC walkers. The imaginary time evolution is shown for the fir
three DMC time stepsDt, 2Dt, and 3Dt.
g

t

y
s

-

re

c-

-

t are returned to the multidimensional Monte Carlo integ
tion.

Figure 1 shows a scheme for the implementation of
Monte Carlo integration and the DMC walk. This schem
shows the configurations for the firstn samples of the Monte
Carlo integration andn DMC walkers starting at these con
figurations. The calculation sketched in the scheme has t
repeatedm times. The division by the correction factor o
Eq. ~21b! is carried out at the end of the simulation.

Now the algorithm for evaluating Eq.~21b! is given. The
choice ofcT andA is discussed in Secs. IV and V for ou
particular applications. Computational parameters~e.g.,
DMC time stepDt, numbers forp, l , andN) are given in
Secs. IV A and IV B. The next section describes the inve
Laplace transform ofk̃(t) with MEM, in order to complete
the calculation ofk(v).

III. THE MAXIMUM ENTROPY ANALYSIS

The inverse Laplace transform is a well-known ill-pos
numerical problem. The maximum entropy meth
@26,32,48,49# is based on Bayesian statistics and provide
consistent probabilistic theory to obtain unbiased results,
dependent of any model assumptions. A recent review
Jarrell and Gubernatis@50# gives a good introduction to
Bayesian statistical inference and to the principle of ma
mum entropy, and also discusses some technical details.
use of the maximum entropy method differs somewhat fr
the more common application to real time continuation
imaginary time data, in that we are concerned with a Lapl
kernel for the inverse transform. We restrict ourselves her
a short summary of the main ideas, following Guberna
et al. @26#, and explain some details specific to the pres
applications.

Bayes’s theorem relates the probability distribution fun
tion, P@k(v)uk̃(t),I #, to the probability distribution function
P@k(v)uI #, which encodes our prior knowledge,

-
r-
-

f

FIG. 2. Harmonic oscillator. The simulated exponential dec
L$k(v)%5k̃(t), obtained using the exact ground state wave fu

tion c0 and the projectorx̂. The time steps areDt51.0(\/Eh),
Dt50.2(\/Eh), andDt50.012(\/Eh). We also performed simula
tions using time stepsDt50.007(\/Eh) andDt50.002(\/Eh). The
resulting exponential decay for these smaller values ofDt is indis-
tinguishable from the decay withDt50.012(\/Eh). The time step
in the legend is given in atomic units.
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P@k~v!uk̃~ t !,I #}P@ k̃~ t !uk~v!,I #P@k~v!uI #. ~22!

Here P@k(v)uk̃(t),I # summarizes our inference about th
spectral density functionk(v) given the Monte Carlo data
k̃(t) and relevant background informationI such as prior
knowledge aboutk(v). P@k(v)uI # is called the prior prob-
ability distribution and represents our state of knowled
about k(v) before we have the data. This prior state
knowledge is modified by the data through the so-called li
lihood function, P@ k̃(t)uk(v),I #, which encodes details
about the nature of the Monte Carlo simulation. The prod
of the prior probability distribution function and the likel
hood function yields theposteriori probability distribution
function and represents our state of knowledge aboutk(v)
after we have analyzed the data. The likelihood functi
P@ k̃(t)uk(v),I #, tells us how likely it is that we would have
simulated the data we actually did, given an underly
k(v). In order to compute the likelihood function it is ther
fore essential to be able to calculate an ideal data
k̃ ideal(t) from a given spectral density functionk(v). The
relevant transform is given in our case by

k̃ ideal~ t !5E
0

`

dv K~ t,v!k~v!, ~23!

with the specific kernel,

K~ t,v!5exp~2tv!. ~24!

We make the customary assumption that the Monte C
data are subject to additive Gaussian noise with a root-m
square errors r . Empirical tests of the data distributions di
cussed in the next section justify these assumptions. Then
likelihood function takes the form

P@ k̃~ t !uk~v!,I #}expS 2
x2

2 D , ~25!

wherex2 is given by

x25(
rs

N

@ k̃~rDt !2k̃ ideal~rDt !#@C
21# rs

3@ k̃~sDt !2k̃ ideal~sDt !#, ~26!

whereDt is the discrete DMC time step,N is the number of
DMC time steps, and@C21# rs is an element of the invers
covariance matrix.C describes the correlations between t
Monte Carlo data,

Crs5
^k̃~rDt !k̃~sDt !&2^k̃~rDt !&^k̃~sDt !&

M21
, ~27!

where M is the number of independent samples of ea
k̃(rDt) and the angular brackets denote a statistical aver
If the errorss r are independent, the nondiagonal elements
the covariance matrixC are equal to zero and Eq.~26! sim-
plifies to the usual sum-of-squared-residuals misfit stati
@51#,

x25(
r

N F k̃~rDt !2k̃ ideal~rDt !

s r
G2. ~28!
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For quantum Monte Carlo data the assumption of Gaus
distributed errors is often adequate~see Sec. IV A!, but the
assumption of independent errors is usually very po
Therefore rather than Eq.~28!, we use the definition ofx2

given by Eq.~26! to calculate the likelihood function, Eq
~25!.

The prior knowledge aboutk(v) is that it is a positive
and additive distribution. The appropriate prior distributio
for this case is the entropic form@52#,

P@k~v!uI #}exp~aS!, ~29!

whereS is the generalized Shannon-Jaynes entropy,

S5E dvFk~v!2m~v!2k~v!ln
k~v!

m~v!G , ~30!

anda is a parameter. The functionm(v) in Eq. ~30! is the
default model, i.e., the initial model assumed fork(v). Our
results are calculated from the Bayesian procedure sugge
by Bryan @53#. In this approach the optimal solution to E
~23! is given by the average over the posterior probabi
P@auk̃(t),m(v)#:

kopt~v!5E daP@auk̃~ t !,m~v!#ka~v!. ~31!

kopt(v) is referred to as the maximum entropy reconstru
tion, or image. The posterior probability functio
P@auk̃(t),m(v)# is found by using Bayes’s theorem an
making a functional integration@53,54#. ka(v) is the image
that maximizesaS2x2/2 for a given, fixeda. Note that
x2 is also an implicit function ofa, via k̃ ideal(t). In this
work, we take the flat model form(v), i.e.,m(v)5const.

Our Monte Carlo simulation described in Sec. II gives
a single value ofk̃(rDt) for each discrete timerDt. In order
to gather the statistics for the covariance matrixC we per-
form aboutM550 independent simulations with differen
random number seeds. In each simulation we storek̃(rDt)
for eachr . We accumulate theM statistically independen
measurements. By the central limit theorem the sample v
ance of these measurements becomes a measure of the
variance of measurements as their distribution becom
Gaussian. The relative statistical error,Crr /^k̃(rDt)&, result-
ing from the Monte Carlo simulation is about 0.5%, depen
ing on the imaginary timet and the parameterp of the
Monte Carlo simulation~see Sec. II!. For the maximum en-
tropy analysis we used about 60 data pointsrDt alongt. For
the harmonic oscillator application we performedN5400
DMC time steps using the discrete time st
Dt50.012(\/Eh) and use only every fifth Monte Carlo dat
point for the maximum entropy analysis. The maximal val
of t is heretmax53.6(\/Eh). Figure 2 demonstrates that th
signal k̃(t) has decayed to a value close to zero
tmax53.6(\/Eh). For the Morse oscillator application w
performedN53000 DMC time steps, using the discrete tim
step Dt50.002(\/Eh) and use only every fortieth Monte
Carlo data point for the maximum entropy analysis: he
tmax54.8(\/Eh). Since we do not use every Monte Car
data point, the data input to the maximum entropy analy
are nearly independent. This can be seen if we analyze
covariance matrixC. Aspects concerning the Gaussian s
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tistics of the Monte Carlo data are discussed at the en
Sec. IV A for the harmonic oscillator application.

Our initial attempts to perform the reconstruction by t
regularized inverse Laplace transform developed by Bria
et al. @37,38# were not able to completely resolve spec
with several peaks. The problem seems to be the smooth
assumption entering the regularization scheme rather
the statistical quality of the Monte Carlo data. All fin
analysis presented in Sec. IV have therefore been perfor
with the maximum entropy method.

IV. APPLICATIONS

We present an application to the harmonic oscillator~Sec.
IV A ! and to several Morse oscillators~Sec. IV B!. These
model applications are ideal for benchmarking our meth
since the numerical results can be compared with exact
lytical solutions. The general Monte Carlo formalism d
scribed in Sec. II does impose two restrictions on the t
wave function: The trial wave function has to be nodele
and close to the exact ground state wave function. We
the exact ground state wave function of the harmonic os
lator for our first simulations. Later on in Sec. IV A w
present simulations using nonexact ground state wave f
tions, because in many realistic cases we do not know
exact ground state wave function of the system. In Sec. IV
the method is applied to four Morse oscillators. The h
monic oscillator can be considered as a limiting case of
Morse oscillator where the anharmonicity goes to zero.
alistic molecular systems will generally be anharmonic,
the Morse oscillator is an important test case.

A. Harmonic oscillator

As a first simple example of the Laplace transfo
method we chose a one dimensional harmonic oscillator.
physical quantities are expressed in atomic units. With m
set equal to 1.0me , the Hamiltonian is given by

H5~ â1â1 1
2 !, ~32!

where â1 and â are the raising and lowering operators, r
spectively. The trial wave function,cT , is chosen to be the
exact ground state wave function,

c05S 1p D 1/4expS 2
1

2
x2D , ~33!

and the reference energyEref is chosen to be the exac
ground state energy,E050.5Eh . We employ the projection
operator

A5 x̂5A 1
2 ~ â11â!, ~34!

because this operator causes transitions to the first ex
state only. The fact thatx̂ causes transitions to only the fir
excited eigenstate of the harmonic oscillator motivates
name ‘‘projector’’ introduced in Sec. II. The simulation the
gives us the energy difference between the ground state
and the first excited state level. This model is a useful
because we can determinek(v) and k̃(t) in this case ana-
lytically. Thus,
of
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k~v!5 1
2d~E02E11v!, ~35!

whereE05
1
2Eh andE15

3
2Eh are the first eigenenergies o

the harmonic oscillator and

k̃~ t !5 1
2 exp~2t !. ~36!

Our simulation should therefore exhibit a single exponen
decay, with amplitude 0.5 fort50(\/Eh) and with a time
constant equal to 1.0(Eh /\). The maximum entropy analysi
should result in a peak atE12E051.0Eh .

The only systematic error that might occur in the simu
tion is a DMC time step error. Therefore we checked t
time step Dt quite carefully and found a time step o
Dt50.012\/Eh to be appropriate. We averagedp5105

DMC walks for each determination ofk̃(t). We used a quite
large skip parameter,l5100, to ensure statistical indepen
dence of the configurations used as DMC starting points,
performedN5400 DMC time steps. The relative statistic
uncertainty of eachk̃(rDt) fluctuates along the imaginar
time axist but is always less than 0.5%. This statistical u
certainty stems from the Monte Carlo simulation and can
in principle reduced arbitrarily. The error reduction sca
with the square root of the number of samplesM . We per-
formed aboutM550 independent Monte Carlo simulation
~each with p5105 DMC walks!, giving us M different
samples ofk̃ ( j )(rDt), j51, . . . ,M , for eachrDt. We calcu-
late the mean,

^k̃~rDt !&5
1

M(
j51

M

k̃~ j !~rDt !, ~37!

for each discrete time,rDt, and the root-mean-square erro

s r5A^@ k̃~rDt !#2&2@^k̃~rDt !&#2

M
. ~38!

^k̃(rDt)& given by Eq.~37! ands r given by Eq.~38! are our
input data for the maximum entropy analysis. For this we u
only about 60 regularly distributed data points alongt, as
described in Sec. III. We checked that these data o
Gaussian statistics~see the end of this section!.

Figure 2 shows the simulated exponential decay
Dt50.012(\/Eh). Also shown are two curves for larger tim
steps. It is evident that larger time steps th
Dt50.012(\/Eh) result in an incorrect decay. Smaller tim
steps do not change the exponential decay and are not sh
in Fig. 2. The calculated analytical exponential decay is
shown. It coincides with the simulated decay f
Dt50.012(\/Eh). The application of the maximum entrop
analysis then results in the spectrum shown in Fig. 3.

We first discuss the simulation using the projectorx̂. We
observe a peak with the mean lying atvpeak'1(Eh /\). The
integral under the peak gives us the prefactor of the ex
nential decay, namely,I peak'0.5. Table I summarizes th
exact analytical results and Table II shows the correspond
numerical results. The simulated peak positionvpeakand the
integral under the peakI peak agree with the analytical num
bers to 1%.

Since we have chosen the projection operator,A5 x̂, we
project only on the first excited wave function



te
rv

o
-

e

n

y-
.
d

t
r
, t
ak
th

at
se

tate

itten

ve
es

di-
the

in

al-
nce

-

aks
The

that
d
er-

n

ith

n
ve

er

py
io

55 3671EXCITED STATES BY QUANTUM MONTE CARLO . . .
x̂uc0&}uc1&. ~39!

This opens the possibility to check our simulated Mon
Carlo data by a least-squares fit. We fit the discrete cu
k̃(rDt) to the analytical formCexp(2at) where our fit pa-
rameters areC anda. Our least-squares result for these tw
parameters,C50.50 anda51.00(Eh /\), also agrees per
fectly with the exact analytical solution.

Using different projectors likeA5 x̂2,x̂3, . . . we can
project on higher excited eigenstates and therefore get en
differences such asE22E0 ,E32E0 , . . . . The projection
operator A5 x̂2 results in peaks atvpeak50(Eh /\) and
vpeak52(Eh /\) in the k(v) spectrum, and the projectio
operator A5 x̂3 results in peaks atvpeak51(Eh /\) and
vpeak53(Eh /\). The results of the maximum entropy anal
sis for these projection operators are also shown in Fig. 3
is evident that the peaks at higherv are less pronounced an
broader than the peaks at lowerv. The maximum entropy
analysis becomes more demanding for simulations using
projectorsx̂2 and x̂3 than for simulations using the projecto
x̂, since the spectra are becoming more structured. So
intensity in each peak is lowered and neighboring pe
might not be separated clearly. Table II summarizes
simulated results for all three projectors,x̂, x̂2, and x̂3.

Since we generally do not know the exact ground st
wave function for a more complicated system, we also u
two nonexact trial wave functions,

TABLE I. Harmonic oscillator. Analytical values for the mea
peak position,vpeak, and the integral under the peak,I peak, ob-
tained for the exact ground state wave functionc0 using the pro-

jectorsx̂, x̂2, andx̂3. Analytical values forvpeakobtained using the
wave functionscT1 andcT2 are the same as those obtained w
c0. All values are given in atomic units.

x̂ x̂2 x̂3

c0

vpeak 1.0 0.0 2 .0 1.0 3.0
I peak 0.5 0.25 0.5 1.125 0.75

FIG. 3. Harmonic oscillator. The result of the maximum entro
analysisk(v) is shown using the exact ground state wave funct

c0 and the projectors,x̂, x̂2, and x̂3.
e
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cT15NT1exp~20.4x2! ~40!

and

cT25NT2exp~20.3x2!, ~41!

in order to get an idea how the accuracy of the ground s
function affects the results.NT1 andNT2 are normalization
constants. These nodeless trial wave functions can be wr
as an expansion in the exact eigenstatesc j of the harmonic
oscillator,

cT1,25(
j
cjc j . ~42!

The coefficientsc0 andc2 give the main contributions in the
expansion for both trial wave functions: For the trial wa
function cT1 the ground state wave function contribut
about 93% and for the trial wave functioncT1 the ground
state wave function contributes about 84%. Therefore, as
cussed in Sec. II A, we expect more than one peak in
k(v) spectrum if we use, e.g., the projectorx̂. Since these
trial wave functions are even functions, the projectorx̂
should give us peaks only at oddv, i.e., v51(Eh /\),
v53(Eh /\), etc. The peak positions of the main peaks
the spectrum using the other projectors (x̂2, x̂3, . . . ) should
still be located atvpeak50(Eh /\),1(Eh /\), . . . . Applica-
tion of a sequence of different projectors therefore still
lows the construction of a complete spectrum. The refere
energy is chosen to be the trial energyET1 andET2 in the
simulations using trial wave functionscT1 andcT2, respec-
tively.

The results fork(v) calculated with the trial wave func
tions given by Eq.~40! and Eq.~41! are shown in Figs. 4~a!
and 4~b!, respectively. Calculations were made usingA5 x̂,
x̂2, and x̂3. The presence of an increasing number of pe
makes the maximum entropy analysis more demanding.
numerical results are given in Table II. Figure 4~a! shows a
peak atvpeak'3(Eh /\) using the projectorx̂, which is en-
hanced by a factor of 100. This peak arises from the fact
the trial wave functioncT1 is contaminated with the secon
excited eigenfunction. The results from simulations p
formed with the trial wave functioncT2 are shown in Fig.

TABLE II. Harmonic oscillator. Numerical values for the mea
peak positions,vpeak, obtained using the exact ground state wa
function c0 and the trial wave functionscT1 and cT2, with the

projectorsx̂, x̂2, andx̂3. The numerical values for the integral und
the peakI peakare given forc0 only. All values are given in atomic
units.

x̂ x̂2 x̂3

c0

vpeak 1.011 0.001 2.000 1.043 3.070
I peak 0.499 0.248 0.500 1.162 0.702

cT1

vpeak 1.008 0.009 2.064 1.040 3.149

cT2

vpeak 0.997 0.011 2.132 1.038 3.413n
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3672 55D. BLUME, M. LEWERENZ, P. NIYAZ, AND K. B. WHALEY
4~b!. Here we see two additional peaks, which do not oc
in Fig. 3. These additional peaks should be theoretically
vpeak53(Eh /\) for A5 x̂ and at vpeak54(Eh /\) or
vpeak56(Eh /\) for A5 x̂2. The intensity of these peaks
quite low. The maximum entropy analysis indicates the pr
ence of these additional peaks but is not able to locate t
at the correct position. These small additional peaks a
specifically from the nonexact trial wave functionscT1 and
cT2, and should not be unduly overemphasized. The relia
information is that there are additional peaks in the spectr
and not where theexactposition of these peaks is. A suitab
choice of other projection operators can be made to ob
these peaks with higher intensity, and therefore more r
ability.

The input for the maximum entropy analysis is the me
given by Eq.~37! and the error given by Eq.~38!. The as-
sumption of the analysis requires the input data to o
Gaussian statistics. We used the simulated data f
cT5c0 with A5 x̂ and the DMC time step
Dt50.012(\/Eh) to check the statistics. Figure 5~a! shows a
histogram from many independent Monte Carlo runs of
datak̃(rDt) for r50 (M5180) and Fig. 5~b! shows a his-

FIG. 4. Harmonic oscillator. The result of the maximum entro
analysis,k(v), obtained using the trial wave functions,cT1 ~a! and

cT2 ~b!, with projectorsx̂, x̂2, and x̂3. ~a! The curve representing

the projectorx̂ ~solid line! has a peak atvpeak'1.0(Eh /\) and an
additional peak atvpeak'3.0(Eh /\), which is multiplied here by a

factor of 100.~b! The curve representing the projectorx̂2 has peaks
at vpeak'0.0(Eh /\), '2.0(Eh /\) and'5.5(Eh /\). The latter is
multiplied by a factor of 10 here.
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togram of the datak̃(rDt) for r5200 (M5180). The data
for r50 stem from the multidimensional Monte Carlo int
gration @ t50(\/Eh!#. The DMC propagation along the
imaginary timet gives us the data forr5200, which corre-
sponds torDt52.4(\/Eh). The Gaussian distribution corre
sponding to the mean and the variance of the Monte C
data is plotted for comparison in Figs. 5~a! and 5~b!. This
confirms that our Monte Carlo data definitely obey Gauss
statistics, both fort50(\/Eh) calculated via a Monte Carlo
integration, and fort.0(\/Eh) calculated via DMC.

B. Morse oscillator

The potential of the Morse oscillator is given by

V5De@12exp~2ax!#2, ~43!

whereDe is the dissociation energy anda is the range pa-
rameter. We restrict ourselves to parametersDe anda such
that the force constant

F52Dea
2 ~44!

FIG. 5. Harmonic oscillator. The probability distribution of th
Monte Carlo data,k̃(rDt), is shown at the imaginary time value
t50(\/Eh) ~a! and t52.4(\/Eh) ~b!. These simulated data~sym-
bols!, k̃ ( j )(t), are binned in histograms. We performedM5180

independent simulations usingc0 and the projectorx̂. The Gaussian
distribution given by the mean and the variance of the Monte Ca
data is plotted as a solid line for comparison.
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55 3673EXCITED STATES BY QUANTUM MONTE CARLO . . .
is equal to 1, as in the harmonic oscillator example. T
energy levels of the Morse oscillator are given by

Ei5ve~ i1
1
2 !2xe~ i1

1
2 !2, ~45!

where

ve5a\A2De

m
~46!

and

xe5
~a\!2

2m
. ~47!

The mass of the Morse oscillator is chosen to be equa
1.0me . The exact ground state wave function can be
pressed in terms ofDe anda,

c05N0z
~ve /xe21!/2expS 2

z

2D , ~48!

where

z5
ve

xe
exp~2ax! ~49!

andN0 is a normalization constant. The number of bou
statesk is given by

k5
ve

2xe
. ~50!

The projection operators,A5 x̂,x̂2, . . . , no longer project
onto only one or two higher eigenstates of the system as
the harmonic oscillator case, but onto the whole manifold

We use four different Morse oscillators defined in Tab
3. They will be referred to as MO1 to MO4. MO1 is ver
similar to the harmonic oscillator, while MO4 is the mo
anharmonic oscillator, with only four bound states. In ea
case we use the exact ground state wave function, the r
ence energy,Eref5E0, and the projection operator,A5 x̂.
Figure 6 shows the results of the maximum entropy anal
of the imaginary time evolution. We observe two peaks
each spectrum, one atvpeak'0(Eh /\) and one at
vpeak'1(Eh /\). The peak atvpeak'1(Eh /\) is progres-
sively shifted to smaller values for the Morse oscillato
~relative to the harmonic oscillator value! due to the increas
ing anharmonicity. Table III demonstrates the excelle
agreement between the analytical and the simulated va
for the positions of these peaks. The deviation between
simulated and the analytical results is less than 2% for
Morse oscillators. The two peaks in the spectrum for MO
the most anharmonic oscillator, are not clearly separated~see
Fig. 6!. The mean of the second peak given in Table III
calculated usingvP@0.35(Eh /\),1.2(Eh /\)#. Although the
maximum entropy analysis does not separate these two p
clearly, the spectrum does nevertheless show that there
two different peaks in the spectrum, in agreement with a
lytical predictions. In contrast, MO1 behaves almost like
harmonic oscillator. Thus the projectorx̂ projects mainly on
the first excited eigenstate forcT5c0. The peak at
e
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vpeak'0(Eh /\) in the MO1 spectrum, which derives from
the anharmonicity, has a very low intensity. The intensity
this peak becomes larger for the oscillators MO2 to MO4,
a result of the increasing anharmonicity. The opposite tre
is exhibited by the intensity of the second pe
@vpeak'1(Eh /\)#, which becomes smaller going from MO
to MO4. The absolute maximum of the peak itself does
include any useful information. The physically relevant i
formation is the integral under the peak, and the mean p
tion of the peak. The peak widths depend on the Monte Ca
simulation parameters and on the maximum entropy an
sis, namely, on~i! the number of Monte Carlo samplesp, ~ii !
the number of independent Monte Carlo runsM , and~iii ! the
number of eigenvalues used for the maximum entropy an
sis @26#.

Typical parameters used in our Monte Carlo implemen
tion are:Dt50.002(\/Eh ), N53000, number of sample
p5104, skip parameterl5100, and number of independen
simulationsM550.

V. CONCLUSION

We have presented a method for the calculation of exc
state energies of quantum mechanical systems, based o

FIG. 6. Morse oscillator. The result of the maximum entro
analysis,k(v), obtained for the four Morse oscillators MO1 t

MO4 with the projectorx̂ and the appropriate exact ground sta
wave function in each case.

TABLE III. Morse oscillator. Parametersa andDe for the four
Morse oscillators MO1 to MO4~lines 1 and 2!, number of bound
statesk, ground state energyE0, first excited state energyE1, and
energy differenceE12E0 ~lines 3 to 6!. These are calculated ana
lytically ~see text!. The position of the peak in thek(v) spectrum,
vpeak, obtained from the imaginary time simulation is given in lin
7. All values are given in atomic units.

MO1 MO2 MO3 MO4

a 1
5 5 0.2 1

450.25 1
3 5 0.3̄

1
2 5 0.5

De 12.5 8.0 4.5 2.0
k 25 16 9 4
E0

99
200

63
128

35
72

15
32

E1
291
200

183
128

99
72

39
32

E12E0 0.96 0.9375 0.8̄ 0.75

vpeak 0.974 0.941 0.895 0.782
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imaginary time evolution of projected states that is p
formed by a diffusion Monte Carlo algorithm, followed by
numerical inverse Laplace transform. Our test applicati
here are restricted to one dimensional problems, but the
vorable scaling of the Monte Carlo formalism with the num
ber of degrees of freedom makes this potentially a very u
ful tool for the treatment of many particle systems. T
applications to the harmonic oscillator and to four Mor
oscillators of increasing anharmonicity studied here show
excellent agreement with analytical results.

The input needed for this method is the HamiltonianH,
an analytical nodeless trial wave functioncT , and an arbi-
trary reference energyEref . The reference energy drops o
in the final expression and affects only the numerical e
ciency of the suggested algorithm. The reference ene
should therefore be close to the trial energyET . The best
trial wave function is the exact ground state wave functi
In general a trial wave function close to the exact grou
state wave function is a good choice. The simulations p
sented here for the harmonic oscillator using two nonex
trial wave functions show that the method gives good res
even if the trial wave function is not the exact ground st
wave function.

The inverse Laplace transform of the imaginary time e
lution yields energy differences between the exact gro
state and higher excited states of a system. Thus in orde
calculate absolute excited state energies, the ground stat
ergy of a system has to be known. One can, for exam
perform a standard DMC calculation, which gives the ex
ground state energy and a representation of the ground
wave function in the form of a histogram. The informatio
on the ground state wave function provided by the stand
DMC calculation could also be used for the construction
the trial wave function needed for the present method
particular symmetries are present in the system under in
tigation or if the construction of good approximations to e
cited state wave functions is possible, the present met
could be combined with a fixed node approach. Exploitat
of symmetries could be used for the efficient calculation
specific subsets of the complete spectrum. In principle a
weighting algorithm similar to the sidewalk technique e
ployed for the calculation of the expectation values@45#
could be used to correct for deficiences of the trial wa
function.

McMahon and Whaley@44# used the presented techniqu
to investigate the energy transfer in a quantum cluster
tem, namely, the energy transfer from rotationally exci
Cl 2 to the collective modes of Cl2He6. The projection op-
erator is identified here with a coupling potential and th
their basic formula is the linewidth contribution derived fro
population transfer via golden rule rates.
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The inverse Laplace transform was performed here by
maximum entropy method. When there are many peak
the spectrum, this transformation can become problema
This is the case if we use projectors such asx̂2 or x̂3 or trial
wave functionscT , such thatAucT& is not close to an eigen
state of the system. We can overcome this by making a
dicious choice of the projection operators, in the followin
fashion. We can choose a sequence of suitable projec
operators that allows us to extract energy differences ste
step. These projection operators can be used simultaneo
in a single simulation, since the configurations created
the sampling of the multidimensional integration and for t
imaginary time propagation are not affected by the proj
tion operator. Therefore the computational effort does
increase significantly by using several projection operat
simultaneously. Then we can construct a set of spectra
can be compiled to constitute a complete spectrum cha
teristic for the system of interest. We expect to be able to
these projection operators efficiently for the calculation
experimentally relevant excited states. A particularly int
esting class of projectors are those defined in a space-fi
coordinate system, which opens a path to rotationally exc
states.

The experience gained with these first applications n
opens the possibility to study more realistic systems. O
possibility would be the treatment of van der Waals vib
tions. The investigation of vibrations of a system like a m
ecule embedded in a small Arn cluster appears to be ver
interesting. Here we have a vibration of high frequency
the embedded molecule and vibrations of low frequency
the Ar cluster. A model for this realistic test case is a tw
dimensional system where we use two coupled oscilla
with different eigenfrequencies. The projection operator c
be chosen to be the coordinate of the first or of the sec
oscillator. This model application will give us evidence if
is possible to extract vibrations with very different freque
cies. The strength of the coupling between the two oscillat
can be modified and the influence on the simulation can
checked. This investigation will be the subject of a forthco
ing publication.
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