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Excited states by quantum Monte Carlo methods: Imaginary time evolution
with projection operators
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We present a Monte Carlo algorithm suitable for the calculation of excited state energies of multidimen-
sional quantum systems. Energies are extracted from a maximum entropy analysis of the imaginary time
evolution of a state prepared by application of a projection operator on an initial wave function. The imaginary
time evolution is computed with a pure diffusion Monte Carlo algorithm. The method is demonstrated on a
harmonic oscillator and several Morse oscillator test probl¢®%063-651X97)07503-X]

PACS numbefs): 02.70.Lg, 02.50.Wp, 33.20.Tp, 36.20.Ng

I. INTRODUCTION plete set of bound states of any many-body system. These
properties can be relatively easily computed with the path
Excited states play a central role in the physics and chemintegral Monte CarldPIMC) technique. Most of the efforts
istry of atoms, molecules, and clusters. Despite many effortdn this class were directed towards the calculation of the real
however, the exact theoretical description of the completdéime dynamics of quantum systerf4—30, which requires
vibrational spectrum of a system with many degrees of freeknowledge of the complete spectry®1—-33. The biggest
dom in the general case of anharmonic potential surfaces arabstacle in the practical application of these latter approaches
large amplitude motions has remained elusive. Normal modes the extraction of a spectral density, which is similar to
descriptions that can easily handle several hundred degreperforming an inverse Laplace transform numerically. This
of freedom are applicable only to vibrational motions inis a well known ill-posed problem.
large molecules with stiff bonds and small atomic displace- The numerical solution of the inverse Laplace transform
ments. Variational basis set expansions that do not make arproblem has been attempted in the past with least-squares
approximations to the Hamiltonian have remained restricted@pproachef31] and various regularization methold?1—38.
to small molecules with currently up to six degrees of free-Among these techniques the regularized inverse Laplace
dom [1,2] because of the computational complexity of thetransform using Padapproximationg34,39 and the method
problem, although they can in principle provide a large num-of Brianzi et al. [37,38 appear attractive. For the present
ber of energy levels and corresponding wave functions.  problem of strongly structured spectra the implicit smooth-
Complementary in many ways to the exact variationalness assumptions of these methods turned out to be unsuit-
methods developed for small systems are the stochastic apble, however. In practice, the maximum entropy method
proaches collectively referred to as quantum Monte CarldMEM) has proven to date to be the most powerful tool for
methods. These methods are ideal tools for the study of thihe solution of this inverse problem, and has found a high
vibrational ground state of very large systef@s-6] or the  degree of popularity26,32,33,40,4L A combination of fi-
determination of thermodynamic properties of quantum sysnite temperature PIMC and maximum entropy data analysis
tems[7,8]. They have reached a very high degree of sophishas been used successfully for the description of electron
tication in recent years. The extraction of information onbubbles in heliunj33] and oscillator chaing41]. A problem
excited states from this type of calculation has, howeverpbserved in several of these applications is the increasing
proven to be very difficult. difficulty to provide a reliable data analysis if several peaks
Successful adiabatic extensions of the diffusion quantunare present in the target spectrum. This situation becomes
Monte Carlo(DMC) method have been designed for specificworse with increasing number of degrees of freedom, since
problems[6,9—-19. Special methods exist for cases with the finite temperature data always include all energy levels of
known nodal surfacef9,10,13-16. Both approaches, how- the system under investigation.
ever, do not provide a general solution to the problem. Early The method proposed in this paper was inspired by a
attempts at successive orthogonalizafidf] have remained similar approach of Carlson and Schiavilla who used Green'’s
restricted to few degrees of freedom. Several efforts aimindgunction Monte Carlo(GFMC) to calculate the Euclidean
at an automatic construction of nodal surfafE8-20 have  proton responsgt2]. Our approach extracts excited state en-
been published recently. A promising technique that hagrgies from a maximum entropy analysis of the imaginary
been demonstrated to date on relatively small problems is thigme evolution of an initial state. The imaginary time evolu-
correlation function quantum Monte Carl@lCFMC) ap- tion is computed with a zero temperature diffusion Monte
proach initiated by Ceperlegt al.[21-23. Carlo algorithm. Application of an additional projector on
Another class of methods has been designed based on thee initial wave function allows us to restrict the number of
fact that finite temperature thermodynamic data and correlgpeaks in the spectrum. One can therefore construct the com-
tion functions in principle contain information on the com- plete spectrum by the application of a sequence of projectors.
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However, for many of the applications which we are aiming t

at, complete knowledge of the spectrum is not even required. I(t):<¢T|EXF{ —(H=Erey

For example, if the goal of our calculation is the estimation

of the optical excitation spectrum of a molecule embeddegan be sampled from a DMC random walk by evaluating

into a matrix or a clustef4,6], we can tailor the projector to

selectively suppress the collective excitations of the matrix [(t)=(W(1)), 4

in order to gain information on the matrix shift of the mol- ) ] ) ] )

ecule or to extract exclusively information on collective ex-WhereW is the cumulative branching weight used in pure

citations accompanying molecular excitations in the form ofPMC,

phonon side bands. A particularly interesting observation of N At

the latter phenomenon has been_made in el_ect_ronlc_exmtatlon W(t) = H exr{ —(EL(R)—Eye)—|, (5)

spectra of molecules embedded into large liquid helium clus- k=0 h

ters[43]. For such a spectroscopic application the projection

operator can be, e.g., identified with the dipole operatorand the angular brackets denote a statistical ave@ig&he

However, we note that our method shares with the finiteRx denote positions in configuration space and are distrib-

temperature versions the limitation to the calculation of enlited with the densityy|?. ¢ is a trial wave function, and

ergies only. The determination of transition matrix elementsEy is the local energyE, = ¢7 *Hyr. One normally takes

and other properties of excited states remains beyond thig.es close to E; for efficiency, whereE; is defined by

scope of the method. Er=(|H| )| 7). At is the DMC time step; the
The organization of the paper is as follows: Section llimaginary timet is divided into a large number of small time

presents the essential features of our quantum Monte Carkteps,At.

method and gives details on the implementation of the algo- The exponential energy dependence of Et. presents

rithm. The maximum entropy method employed for the dataserious problems, especially when the noise of the Monte

analysis is summarized in Sec. Ill. Section |V discusses ap€arlo simulation is non-negligible and when we have to deal

plications to several one-dimensional oscillator test problemsvith multi exponential decays. A more sophisticated ap-

of increasing complexityharmonic oscillator, Morse oscil- proach derives from writing(t) in an integral representation

lators with increasing anharmonicjtywhich illustrate both [40],

the scope of the method and the effect of the choice of dif- .

ferent projectors. Section V summarizes the results and gives *

an outlook on future applications to realistic molecular clus- H(t)= J_w JZO S(E—Ej+ Ered (7l ) exp( —tE)dE.

ter systems. (6)

|4r) ©)

The E; may then be extracted from(t) by performing the
inverse Laplace transform, which is, however, a known ill-
A. General formalism conditioned numerical problem. Our approach is based on
Eqg. (3) and Eq.(6), but includes an additional projection
operatorA, which allows the sequential extraction of excited
energies. Then the inverse Laplace transform is still an ill-
o t posed problem but the resulting exponential decay is domi-
\Ir(R,t):E cjlpj(R)ex;{—(Ej—Eref)—}, (1) nated by only a few eigenenergies, rather than by many
=0 h eigenenergies simultaneously.
Our derivation starts with a rate expressiaifiw),

Il. THE QUANTUM MONTE CARLO METHODS

The wave function of a syster¥/ (R,t), can be formally
written in an eigenfunction expansi¢h5],

wheret is an imaginary timek ¢ is an arbitrary energy shift,
zgsdteErjnand ¥; are the eigenenergies and eigenstates of the K(w)=§f: (i Al ) |28(Es — B+ hr ), )

H| ) =E|4). 2) where ; and ¢; are the initial and final eigenstates of the
) e system having energids andE;, respectively. We will see

- . later thatA really acts as a projector. Equati6f) simplifies,
For sufficiently largét, only the lowest eigenstatéo, con e.g., to Fermi's golden rule expression if we identify the

tributes to¥. The standard DMC algorithm exploits this projection operator with a coupling potentia and in-

property to project out the stationary ground state wave func-I d . f h h ion
tion using the time-dependent ScHiager equation. Contri- clude appropriate prefactors. Then we have an expression for

butions from higher excited states decay fast in comparisothe linewidth,I'(w). McMahon and Whaley44] have used

to contributions from lower excited states. Properties of theEIWIS modified formula to calculate energy transfer rates in

stationary ground stat@j,, like the energy expectation value dopc))ed ?uantum _clusteri. h | f f

can be calculated after the decay process is comfigte ur first step is to take the Laplace transform of &A),
It is evident from Eq.(1) that the imaginary time depen- o

dence of the Monte Carlo solution during the decay phase, E{K(w)}=?(t)=f [ (il Al )|

which is usually discarded in DMC calculations, contains oLt

information about the complete energy spectriiijy- E .

The expectation value of the quantity X 8(E;—Ei+hw)|exp—ot)do (83
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tions. As stated earlier, this allows us to extract energy dif-
. (8b)  ferences sequentially by using a sequence of suitable projec-
tion operators.

t
:1/712 |<wi|A|¢f>|zeXF{_(Ef_Ei)%

The form of Eq.(8b) suggests that we identityas an imagi- _With Eq. (12) we now have an expression for energy
nary time. We now relate this to the imaginary time propa-différences involving a matrix element evaluated over only
gation of the DMC method. Rewriting E¢8b) as the initial state. This matrix element can be evaluated using a

multidimensional Monte Carlo integration for the0 com-
- t . ponent and a DMC walk, which propagats|;), accord-
k()= 1/ﬁ2f (¢ilAl ¢f>eXF{ —(E¢— Ei)ﬂ(MA l) ing to exp)— (H—E;)t/4]. Each configuration used for the cal-
9) culation of the multidimensional integral is propagated by
such a DMC walk. This scheme is reminiscent of the “side-
and moving the exponential &;t/4 to the left yields walk algorithm” developed for the calculation of exact ex-
pectation values by quantum Monte Ca#th]. However, it
) e A ) should be mentioned that our implementation is a “pure”
PP i/ DMC method, which allows the usual exponential growth
(10) and decay but no branching or annihilation of DMC random
walkers. The latter is introduced in most DMC algorithms in
whereH is the Hamiltonian of our system, order to increase the computational efficiency. However,
here we are interested in the decay of the weights as a func-

®(O=1/h3 (MAex;{ —(H—Ei)%

H| ) =Eql ). 1D ion of imaginary time, and therefore it is not advisable to
Using closure to remove the sum over final states then results rt|f|C|aIIy”_ qu|fy these..The 'V'O”‘E? Car_lo formalism _fqr
in the determination ok(t) will be described in more detail in
the following.
= t For convenience we use an unnormalized initial wave
K(t):1/h<¢i|AeXF{ —(H=E)z|A"[¢). (120 function ¢;. Equation(12) is then rewritten with a normal-

ization factor,

Thus we have employed the imaginary time Laplace trans- .
form in order to introduce the correspondence with a DMC ;(t):<‘/fi|AexF{_(H_Ei)t/ﬁ]A )
propagation: see Eq3). Equation(12) is identical with Eq. A

(3) for A=1. The crucial advantage of E(L2) in compari-

son to Eq.(3) is that we are able to choose an arbitrary Now we insert closure relations fé&t andR’, whereR and
projection operatoA, which projects on different wave func- R’ are coordinate vectors,

(13

| ar[ ar (lalR )R exid ~ (H-EpURIIRYRIAT 1)
(il v (143

®()=1/%

f de dR'#i(RIAT (R)(R'[exf — (H—E)UATIR)A(R") ¢5(R")

=1/# : (14b
f dR'y7(R")
Multiplying the integral byy;(R) zpi_l(R)=1, and recognizing that
G(R'.R,t>=<R'lexp{—(H—E»Hlm (15
is the usual Green'’s function, leads to
- vAR) L ,
K(t):l/ﬁf dR————A (R)de'z//i (R)IG(R",R,1) ;(R")A(R"). (16)
f dR”lﬁ'lz(R”)

Substituting now the importance sampling Green'’s funct®in
G|(R" R D=4 (RIG(R" Rt (R, (17

yields
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~ f yAR) J
®(t)=1/h | IR——————A*(R) [ dR'G|(R’,R,1)A(R’). (18)
fdm,//?(R")
Equation(18) is expanded by introducing an integral oves dunction,
® t)—1/ﬁf dR ViR A* R)J dR'A(R’ dez"G R’,R" t)8(R"—R) (19)
k(t)= TAR(R) ( (R") (R, R™,1) &( ,

which leads directly to a Monte Carlo representation. Thewhich can easily be shown to exhibit the required indepen-
outer integration oveR can be performed via a multidimen- dence of the imaginary time signal on both the choice of the
sional Monte Carlo integration, where a chain of configura-reference energyg,s, and the scaling of the weights of the
tions, R, k=1, ... p, distributed with the densitly/i|% is  random walkers. The initial configuratiorR(® are now
sampled by using the Metropolis algorithiM6]. The inte-  sampled from|+(R)|2. This normalization is identical to
gration overR" can be realized by a DMC walk that propa- that suggested by Carlson and Schiavilé2], although
gates each initial configuratid®?’ in imaginary time, where  theirs was not motivated by the same consideration.
the upper index (0) refers to the imaginary tinte;0. The In principle, employingy rather thanyg, introduces a
propagated configuration®y will be labeled for notational  systematic error. This can be analyzed by performing the
simplicity by R{". With this in hand we can formulate the inverse Laplace transform of E(@1a. The transform of Eq.
Monte Carlo representation of E(L9), (213 can be done analytically if we write the trial wave
p function in an expansion in the exact eigenstates. The trial
'E(t):i E A*(Rf(m)A(Rff))w(R(kt) At), (20 wave funct?on has to be close enough_ to the ground state
=] wave function to ensure that the coefficient of the ground

® . . state wave function is at leagD.5. In this situation we can
wherew(R,”,At) is the weight of the DMC random walker expand each component of the expansion in a series and

(t) i i (t) .
atR’ at timet [47]. The weightw(R;”,At) depends onthe  perform the inverse Laplace transform for each term of the

initial configurationR{”, on the instantaneous DMC con- series, The zeroth order term of the resulting expression for
figurationR{ , and on the finite DMC time stefit. Now we () is identical with the inverse Laplace transform of Eq.
have an explicit expression for evaluating Et@) through a  (13); apart from a scale factor. The higher order contribu-
combination of a multidimensional Monte Carlo integration tions result in additional peaks in the spectrum: these have
with DMC walks linked to each sampling point. highly reduced intensity in comparison to the intensity of the

Since the initial wave function; has to be nodele_ss N peaks resulting from the zeroth order contribution. Thus the
order to perform the suggested Monte Carlo algorithm a ”

outlined above, we should use the ground state wave funq,—
tion ¢, as the initial wave functiony; . In general, however,
we do not know the exact ground state wave function an

ides the independence of the final expression from the ref-

rence energy but does not change the relevant features of

energy. Therefore we use a trial wave functign, which h_e resulting spectrum. We demonstrate the influence of a
: ' trial wave function that is not equal to the exact ground state

should approximate the exact' ground state wave fur]Ct'o'{}vave function in the application to the harmonic oscillator
iy as closely as possible. Additionally we normally employ (see Sec. IV A

a reference energl,; instead of the exact ground state en-
ergy Eq. E,of should be close t&, and a popular and effi-
cient choice in DMC calculations &,=E+. Thus, in prac-
tice Eq.(13) would give us energies relative to the reference  We have to createp initial configurations, R{”,
energy E,,. In order to remove any such dependence ofk=1, ... p, in order to evaluate Eq21b). Each initial con-
x(w) on E.g¢, we incorporate an additional normalization figuration R(ko) is used as the starting configuration for a
factor. This leads to the expression DM((ZO) walk and the value of the projection operator
+ A(R\”) is stored for eaclk. Since we need a large number
(¢rlAexd — (H-Ewet/AIA i) p of initial configurations in order to calculaigt) with high

B. Implementation

") = (Yl pr) 213 statistical accuracy we use sets of omlyinitial configura-
(Yr|lexd — (H—Eept/A]] 1) tions,R(”, k=1, ... n, at a time and repeat this procedure
(Y| go7) m times, wherep=nm.

Then our algorithm to evaluate E@1b is the following.
We pick a starting configuratioRﬁ). Using the Metropolis

P
0) (t t)
(1/|O)k21 AT (R )A(Rk))W(R& A algorithm [46] we create a chain of configurations

= 5 , RYRY, ... RY RO RO R .. The maxi-
1 W(RW At mal valuel of the secpnd lower index is chosen to be larger
( p)kzl (R ) than the autocorrelation length of the system. We shall refer

(21  to | as the skip parameter in the following. The configura-
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R© _, F ' ' ' ]
"l; 0.50§ time step 1.0 e o
HO time step 0.2 TTTTT7C
R(O)H 0.40 é‘\\ time step 0.012 _
n2 : : : E E
Rff’l);a ; ; ' DMC walker n 3 0.30F
: : 2 : ]
R 0.20F E
RVA
0.10F E
ROgn 0.00E
22 : 0 5
RO p——  DMC walker 2
R(l?)ﬁl : :
FIG. 2. Harmonic oscillator. The simulated exponential decay,
© L{x(w)}="k(t), obtained using the exact ground state wave func-
R12 R ; § ; tion ¢, and the projectox. The time steps arat=1.0(/E;),
RO & q i DMC walker 1 At=0.2(7/Ey), andAt=0.012¢/E.). We also performed simula-
1 i tions using time step&t=0.0076/E,) andAt=0.002¢:/Ey). The
0 1 2 3 resulting exponential decay for these smaller valueAtofs indis-
tinguishable from the decay witht=0.012¢/E,). The time step
DMC: imaginary time [At] in the legend is given in atomic units.

t are returned to the multidimensional Monte Carlo integra-

FIG. 1. Scheme for the Monte Carlo algorithm. The multidimen-

sional Monte Carlo integration is shown schematically on the ver-t'on', . .
tical axis and the DMC walk is shown schematically on the hori-  Figure 1 shows a scheme for the implementation of the
zontal axis. The configurationR? ,RY, ... R® are sampled Monte Carlo integration and the DMC walk. This scheme

from |¢+(R)|2. | is the skip parameter used for the creation of Shows the configurations for the firstsamples of the Monte
initial configurations,R(®, k=1, ... n, andn is the number of Carlo integration ansh DMC walkers starting at these con-
DMC walkers. The imaginary time evolution is shown for the first figurations. The calculation sketched in the scheme has to be

three DMC time stepat, 2At, and 3At. repeatedm times. The division by the correction factor of
' o _ Eqg. (21b) is carried out at the end of the simulation.
tions Ry, k=1, ... n, are therefore independent samples Now the algorithm for evaluating E21b) is given. The

for the Monte Carlo integration and can be used as startinghoice of yr and A is discussed in Secs. IV and V for our
configurations for the DMC walk, which propagates alongparticular applications. Computational parametdisg.,

the imaginary timet. A(R()), k=1, ... n is evaluated for DMC time stepAt, numbers forp, |, andN) are given in
each k and (1h)=]_,A(RY) is stored. The vector Secs. IV A and IV B. The next section describes the inverse
ARY), k=1,... n is handed over to the DMC routine. Laplace transform ok(t) with MEM, in order to complete

The initial weights for the DMC walk are set equal to 1, but the calculation ofk(w).

weights are updated depending on the posifg{. During

the DMC walk we store (D)=I_,w(RY,Af) and lll. THE MAXIMUM ENTROPY ANALYSIS
(Un) =R w(R A AR A(RLY) as functions of imagi- The inverse Laplace transform is a well-known ill-posed
nary timet. We makeN DMC time StepS, where the discrete numerical prob|em_ The maximum entropy method
DMC time stepAt has to be chosen carefully depending on[26,32,48,49is based on Bayesian statistics and provides a
the system under investigation. ~The  accuraCyconsistent probabilistic theory to obtain unbiased results, in-
of the exponential decay of the DMC weights dependsgependent of any model assumptions. A recent review by
strongly on the DMC time step. DMC calculations usedjarrell and Gubernati§50] gives a good introduction to
to simulate the stationary ground state allow an extrapoayesian statistical inference and to the principle of maxi-
lation to At=0 from runs at severalit since an equili-  mum entropy, and also discusses some technical details. Our
brium state is sampled. However, we are interested hergse of the maximum entropy method differs somewhat from
in the exponential decay of the DMC weights, which the more common application to real time continuation of
are sampled from anonequilibrium state. Therefore we imaginary time data, in that we are concerned with a Laplace
are not able to make a time step extrapolatiolte=0. So  kernel for the inverse transform. We restrict ourselves here to
we have to use a time step small enough that further redugz short summary of the main ideas, following Gubernatis
tion does not change the result fott). The systematic time et al. [26], and explain some details specific to the present
step problem is dicussed in Sec. IV A and is illustrated ingpplications.

Fig. 2 for the harmonic oscillator. Once the DMC propaga- Bayes’s theorem relates the probability distribution func-
tion is finished, the results for (Ay=]_,w(R{Y,At) and tion, P[ x(w)|x(t),1], to the probability distribution function
(1n)=p_ w(RY A A(RDA(RY) as a function of time  P[«(w)|l], which encodes our prior knowledge,
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Pl k(w)[x(t),11<P[(t)|k(w), | IP[k(w)|I]. (22 For quantum Monte Carlo data the assumption of Gaussian
distributed errors is often adequdsee Sec. IV A, but the
Here P[ x(w)|x(t),I] summarizes our inference about the assumption of independent errors is usually very poor.
spectral density functior(w) given the Monte Carlo data Therefore rather than Eq28), we use the definition of?
x(t) and relevant background informatidnsuch as prior given by Eq.(26) to calculate the likelihood function, Eq.
knowledge abouk(w). P[ k(w)|l] is called the prior prob- (25).
ability distribution and represents our state of knowledge The prior knowledge about(w) is that it is a positive
about k(w) before we have the data. This prior state ofand additive distribution. The appropriate prior distribution
knowledge is modified by the data through the so-called likefor this case is the entropic fori®2],
lihood function, P[x(t)|x(w),l], which encodes details
about the nature of the Monte Carlo simulation. The product Plr(w)|l]xexpaS), (29
of the prior probability distribution function and the likeli-
hood function yields theposteriori probability distribution
function and represents our state of knowledge alkdut)
S=J dw

whereS is the generalized Shannon-Jaynes entropy,

k()

after we have analyzed the data. The likelihood function, m(w) |

P[x(t)|k(w),1], tells us how likely it is that we would have
simulated the data we actually did, given an underlyingy,q, is a parameter. The functian() in Eq. (30) is the
«(w). In order to compute the likelihood function it is there- yatayit model, i.e., the initial model assumed fdw). Our

fore essential to be able to calculate an ideal data sgbgits are calculated from the Bayesian procedure suggested
Kigea(t) from a given spectral density function(w). The  py Bryan[53]. In this approach the optimal solution to Eq.
relevant transform is given in our case by (23) is given by the average over the posterior probability
PLalk(t),m(w)]:

k(w)—M(w)—k(w)In (30

Figeal )= f:dw K(t,0)x(w), 29

kop()= | daPLalR(O.M(0) k(@) @D
with the specific kernel,

Kop( @) is referred to as the maximum entropy reconstruc-
tion, or image. The posterior probability function

We make the customary assumption that the Monte Carlg[“l"(t)’m(wn IS fpund by using Bayes’s' theor.em and
data are subject to additive Gaussian noise with a root-meaftaking a fu-nctlonal |n2tegrat|o[53.,54]. Kcr(‘“) is the image
square error, . Empirical tests of the data distributions dis- th2a§ maximizesaS—y*/2 for a given, fixeda. Note that
cussed in the next section justify these assumptions. Then thé 1S @lso an implicit function ofe, via «igea(t). In this
likelihood function takes the form work, we take the flat model fan(w), i.e., m(w) = const.
Our Monte Carlo simulation described in Sec. Il gives us
. X2 a single value ok(rAt) for each discrete timeAt. In order
P[K(t)|x(w),l]ocexp( - 7), (25 to gather the statistics for the covariance ma@ixwe per-
form aboutM =50 independent simulations with different
where x? is given by random number seeds. In each simulation we skqre\t)
for eachr. We accumulate th1 statistically independent

measurements. By the central limit theorem the sample vari-

K(t,o)=exp —tw). (24

N

x?= % [k(rAt) —Kigea A I[C ™ ;s ance of these measurements becomes a measure of the actual
variance of measurements as their distribution becomes
X [k(SAt) — Kigea SAL) ], (26)  Gaussian. The relative statistical errGy, /(k(r At)), result-

ing from the Monte Carlo simulation is about 0.5%, depend-
whereAt is the discrete DMC time step) is the number of ing on the imaginary time and the parametep of the
DMC time steps, andC™'];s is an element of the inverse Monte Carlo simulatior(see Sec. )l For the maximum en-
covariance matrixC describes the correlations between thetropy analysis we used about 60 data poirts alongt. For
Monte Carlo data, the harmonic oscillator application we performbg=400
~ ~ ~ - DMC time steps wusing the discrete time step
_(k(rAt)x(sAt)) — (x(rAt))(x(sAt)) (277  At=0.012(:/Ey) and use only every fifth Monte Carlo data
e M-1 ’ point for the maximum entropy analysis. The maximal value
) ) of t is heret,,,=3.6(A/E},). Figure 2 demonstrates that the
where M is the number of independent samples of eachsignal %(t) has decayed to a value close to zero for
«(rAt) and the angular brackets denote a statistical average. —3 6(;/E,). For the Morse oscillator application we
If the errorso, are independent, the nondiagonal elements oferformedN =3000 DMC time steps, using the discrete time
the covariance matri are equal to zero and E6) sim-  gten At=0.002¢:/E,) and use only every fortieth Monte
plifies to the usual sum-of-squared-residuals misfit statisti¢ario data point for the maximum entropy analysis: here
[51], tma= 4.8(R/E;). Since we do not use every Monte Carlo
N o~ - 5 data point, the data input to the maximum entropy analysis
5 K(rAt) = Kigea(r At)
=3 .

(28) are nearly independent. This can be seen if we analyze the
oy covariance matrixC. Aspects concerning the Gaussian sta-
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tistics of the Monte Carlo data are discussed at the end of k(w)=3%8(Eg—E;+ w), (35)
Sec. IV A for the harmonic oscillator application.

Our initial attempts to perform the reconstruction by thewhere Eo=3E,, and E,=3E,, are the first eigenenergies of
regularized inverse Laplace transform developed by Brianzihe harmonic oscillator and
et al. [37,38 were not able to completely resolve spectra - 1
with several peaks. The problem seems to be the smoothness k() =zexp(—1). (36)

assumption entering the regularization scheme rather tha('3ur simulation should therefore exhibit a single exponential

the statistical quality of the Monte Carlo data. All final . . o : ;
analysis presented in Sec. IV have therefore been performedaecay’ with amplitude 0.5 for=0(#/Ey) and with a time

. . constant equal to 1.6(,/%). The maximum entropy analysis
with the maximum entropy method. should result in a peak &;—E,=1.0E,.

The only systematic error that might occur in the simula-
tion is a DMC time step error. Therefore we checked the

We present an application to the harmonic oscilld8ec.  time step At quite carefully and found a time step of
IVA) and to several Morse oscillatotSec. IV B. These At=0.01%/E, to be appropriate. We averaggu=10°
model applications are ideal for benchmarking our method®MC walks for each determination af(t). We used a quite
since the numerical results can be compared with exact anéarge skip parametet,=100, to ensure statistical indepen-
lytical solutions. The general Monte Carlo formalism de-dence of the configurations used as DMC starting points, and
scribed in Sec. Il does impose two restrictions on the triaperformedN=400 DMC time steps. The relative statistical
wave function: The trial wave function has to be nodelesgincertainty of eache(rAt) fluctuates along the imaginary
and close to the exact ground state wave function. We ustme axist but is always less than 0.5%. This statistical un-
the exact ground state wave function of the harmonic oscilcertainty stems from the Monte Carlo simulation and can be
lator for our first simulations. Later on in Sec. IV A we in principle reduced arbitrarily. The error reduction scales
present simulations using nonexact ground state wave fungvith the square root of the number of samphs We per-
tions, because in many realistic cases we do not know théormed aboutM =50 independent Monte Carlo simulations
exact ground state wave function of the system. In Sec. IV Beach with p=10° DMC walks), giving us M different
the method is applied to four Morse oscillators. The harsamples oik)(rAt), j=1,... M, for eachrAt. We calcu-
monic oscillator can be considered as a limiting case of thdate the mean,
Morse oscillator where the anharmonicity goes to zero. Re-

IV. APPLICATIONS

alistic molecular systems will generally be anharmonic, so _ _ M ~()
the Morse oscillator is an important test case. <"(mt)>_ﬁgl k(ray), (37)
A. Harmonic oscillator for each discrete tima,At, and the root-mean-square error,
As a first simple example of the Laplace transform = NI 2
method we chose a one dimensional harmonic oscillator. All o= \/{[K(rAt)] )M[<K(rAt))] ) (39

physical quantities are expressed in atomic units. With mass

set equal to 18,, the Hamiltonian is given by (%(r A1) given by Eq.(37) and, given by Eq.(38) are our

H=(ata+1), (32) input data for the maximum entropy analysis. For this we use
only about 60 regularly distributed data points aldngas
described in Sec. lll. We checked that these data obey
Gaussian statisticsee the end of this sectipn
Figure 2 shows the simulated exponential decay for
At=0.012¢/E,). Also shown are two curves for larger time
1\v4 1 steps. It is evident that larger time steps than
11;0:(—) exp{ - —Xz), (33  At=0.012@:/E,) result in an incorrect decay. Smaller time
T 2 .
steps do not change the exponential decay and are not shown

and the reference energ,e is chosen to be the exact N Fig. 2. The calculated analytical exponential decay is not

ground state energ¥,=0.5E,. We employ the projection shown. It coincides wi.th _the simulateq decay for
operator At=0.012¢/E,). The application of the maximum entropy

analysis then results in the spectrum shown in Fig. 3.
A=x=+i(at+a), (34) We first discuss the simulation using the projectoiVe

observe a peak with the mean lying@fc,~1(En/%). The
because this operator causes transitions to the first excitddtegral under the peak gives us the prefactor of the expo-
state only. The fact that causes transitions to only the first nential decay, namelyleo~0.5. Table | summarizes the
excited eigenstate of the harmonic oscillator motivates th&xact analytical results and Table Il shows the corresponding
name “projector” introduced in Sec. Il. The simulation then numerical results. The simulated peak positigf.cand the
gives us the energy difference between the ground state levéltegral under the peak,,agree with the analytical num-
and the first excited state level. This model is a useful tesbers to 1%. i
because we can determirgéw) and’x(t) in this case ana- Since we have chosen the projection operafor,x, we
lytically. Thus, project only on the first excited wave function

wherea™ anda are the raising and lowering operators, re-
spectively. The trial wave functionj, is chosen to be the
exact ground state wave function,
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10 ' ' ' ' T TABLE Il. Harmonic oscillator. Numerical values for the mean
- proj. x = —— 1 peak positionswpea, Obtained using the exact ground state wave
g HO proj. Xx o function ¢, and the trial wave functiong/r; and ¢,, with the
[ proj. xxx ---- | projectorsx, x2, andx3. The numerical values for the integral under
6L N the peaM .. are given forys, only. All values are given in atomic
—_ i units.
3 i
< 4r ] X X2 X
2F . Yo
I [ K ] Wpeak 1.011 0.001 2.000 1.043 3.070
(oI ST oo . L] | peak 0.499 0.248 0.500 1.162 0.702
0 1 2 3 4 5 6 ”
27E /h I
w [27E,/h] peak 1.008 0009 2064 1040  3.149

FIG. 3. Harmonic oscillator. The result of the maximum entropy V2
analysisk(w) is shown using the exact ground state wave function “peak

o and the projectorsy, x2, andx®.

0.997 0.011 2.132 1.038 3.413

A 1= Nyrexp(—0.4x%) (40)
X| o)< 1) (S /-

This opens the possibility to check our simul_ated Monte Wro=Npexp(—0.3¢?), (41)
Carlo data by a least-squares fit. We fit the discrete curve _
K(rAt) to the analytical formCexp(—at) where our fit pa- in order to get an idea how the accuracy of the ground state

rameters ar€ anda. Our least-squares result for these two function affects the resultd\y; and N1, are normalization
parametersC=0.50 anda=1.00(E, /%), also agrees per- constants. These nodeless trial wave functions can be written

fectly with the exact analytical solution. as an expansion in the exact eigenstatg®f the harmonic
Using different projectors likeA=x2%3, ... we can OScillator,
project on higher excited eigenstates and therefore get energy
differences such a&,—Ey,E3—Egp, ... . The projection ¢T1,2=2 Ci . (42
i

operator A=X? results in peaks awpea=0(En/h) and
wpea=2(En/f) in the k(w) spectrum, and the projection The coefficients, andc, give the main contributions in the
operator A=x3 results in peaks awpea= 1(Ep /%) and expansion for both trial wave functions: For the trial wave
wpeai= 3(En/1). The results of the maximum entropy analy- function ¢, the ground _state wave fl_mction contributes
sis for these projection operators are also shown in Fig. 3. [@bout 93% and for the trial wave functiofr; the ground
is evident that the peaks at h|ghﬂrare less pronounced and state wave function contributes about 84%. Therefore, as di-
broader than the peaks at lower The maximum entropy cussed in Sec. Il A, we expect more than one peak in the
analysis becomes more demanding for simulations using the(w) spectrum if we use, e.g., the projectar Since these
projectorsx? andx® than for simulations using the projector trial wave functions are even functions, the projecior
X, since the spectra are becoming more structured. So, tHgwould give us peaks only at odd, i.e., 0=1(E,/%),
intensity in each peak is lowered and neighboring peaks=3(Ex/#), etc. The peak positions of the main peaks in
might not be separated clearly. Table Il summarizes thehe spectrum using the other projectoxé,(x3, .. .) should
simulated results for all three projectors,x?, andx®. still be located atwpea=O0(En /%), 1(En/f), . .. . Applica-
Since we generally do not know the exact ground statdion of a sequence of different projectors therefore still al-
wave function for a more complicated system, we also usetpws the construction of a complete spectrum. The reference

two nonexact trial wave functions, energy is chosen to be the trial enefgy; and E, in the
simulations using trial wave functiong;, and ¢, respec-

TABLE I. Harmonic oscillator. Analytical values for the mean tively.
peak position,wpes, and the integral under the peakea, Ob- The results fork(w) calculated with the trial wave func-
tained for the exact ground state wave functignusing the pro-  tions given by Eq(40) and Eq.(41) are shown in Figs. (4)
jectorsx, ij andx®. Analytical values forwpqobtained using the and 4b), respectively. Calculations were made usig X,
wave functionsiyq e_md z//_Tz are t_he same as those obtained with %2, andx3. The presence of an increasing number of peaks
o All values are given in atomic units. makes the maximum entropy analysis more demanding. The
numerical results are given in Table Il. Figuréa¥dshows a

" g2

X X X peak atwpeqa=3(En/f) using the projectok, which is en-
o hanced by a factor of 100. This peak arises from the fact that
Wpeak 1.0 0.0 2.0 1.0 3.0 the trial wave functionjt, is contaminated with the second
I peak 0.5 0.25 0.5 1.125 0.75 excited eigenfunction. The results from simulations per-

formed with the trial wave functions1, are shown in Fig.
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10 [ T T T T A T T 80 I T T T T T
I proj-x  — simulation* + 1
8 - HO proj' KX s - HO
proj. Xxx ---- 60 - gaussian fit I
— 6 B :Ill T §
S i = 40f 1
R 1l . K
I i x 100 =y
b ] = ]
O L :|‘» 1 Ar 1370 1 1 O L ? 1 1 1 i
0 1 2 3 4 5 6 0.480 0.490 0.500 0.510 0.520
(@) w [27nE, /h] (@) Lixc(t)}
proj. x . ; 120 : T T T T
Proj. xx e 3 100 [ simulation + +
/ L proj. xxx ---- 3 L HO , gaussian fit ——
T o =2 ]
| E 3
: //I’ \\\ P X 10 _i i
b) 0 1 i [27T3E /hl]L > 6 0.030 0.040 0.050 0.060
b (b) L1}

FIG. 4. Harmonic oscillator. The result of the maximum entropy
analysis,x(w), obtained using the trial wave functiong;, (a) and

Y, (D), with projectorsx, x?, andx>. (a) The curve representing

the projectorx (solid line) has a peak abpeae= 1.0(E, /) and an
additional peak atpeqe=3.0(Ep /%), which is multiplied here by a

factor of 100.(b) The curve representing the projecidrhas peaks
at wpea=0.0(E /%), ~2.0(E /%) and ~5.5(E, /#). The latter is
multiplied by a factor of 10 here.

4(b). Here we see two additional peaks, which do not occu
in Fig. 3. These additional peaks should be theoretically

wpea=3(En/f) for A=X and at wpea—4(En/h) or
wpea=6(En/h) for A=X2. The intensity of these peaks is

I
al

FIG. 5. Harmonic oscillator. The probability distribution of the
Monte Carlo datax(rAt), is shown at the imaginary time values
t=0(h/E;) (@ andt=2.4(kA/E,) (b). These simulated dataym-
bols), xU)(t), are binned in histograms. We perform&ti=180
independent simulations using and the projectox. The Gaussian
distribution given by the mean and the variance of the Monte Carlo
data is plotted as a solid line for comparison.

togram of the datac(rAt) for r=200 (M =180). The data
{or r=0 stem from the multidimensional Monte Carlo inte-
gration [t=0(%/E)]. The DMC propagation along the
imaginary timet gives us the data far= 200, which corre-
sponds ta At=2.4(%/E;). The Gaussian distribution corre-

quite low. The maximum entropy analysis indicates the pressponding to the mean and the variance of the Monte Carlo
ence of these additional peaks but is not able to locate themata is plotted for comparison in Figs(ab and 3b). This
at the correct position. These small additional peaks arisgonfirms that our Monte Carlo data definitely obey Gaussian

specifically from the nonexact trial wave functiotis; and

statistics, both fot=0(%/E) calculated via a Monte Carlo

12, and should not be unduly overemphasized. The reliabléntegration, and fot>0(#/E;) calculated via DMC.
information is that there are additional peaks in the spectrum,

and not where thexactposition of these peaks is. A suitable

choice of other projection operators can be made to obtain
these peaks with higher intensity, and therefore more reli-

ability.

The input for the maximum entropy analysis is the mean

given by Eq.(37) and the error given by Eq38). The as-
sumption of the analysis requires the input data to obe
Gaussian statistics. We used the simulated data fro

Yyr=1o with A=x and the DMC time step
At=0.012(/E,) to check the statistics. Figuréeh shows a

B. Morse oscillator

The potential of the Morse oscillator is given by

V=DJ1—exp —ax)]? (43

hereD, is the dissociation energy aralis the range pa-
rameter. We restrict ourselves to paramef@gsanda such
that the force constant

histogram from many independent Monte Carlo runs of the

datak(rAt) for r=0 (M=180) and Fig. B) shows a his-

F=2D.a? (44)
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is equal to 1, as in the harmonic oscillator example. The 107 . . . . . . .
energy levels of the Morse oscillator are given by r MOl ——
- o gl Moz MO ]
Ei:we(|+§)_xe(l+§) ’ (45) [ MO3 ..
where B MO4 o N
3
2D, ® gl ]
we—aﬁ m (46) -
2r s .
and [ P :
n? obth T
Xe= " (47 -0.2 00 02 04 06 08 1.0 1.2
m o [2nE_/h]

The mass of the Morse oscillator is chosen to be equal to
1.0m,. The exact ground state wave function can be ex- FIG. 6. Morse oscillator. The result of the maximum entropy

pressed in terms dD. anda, analysis, k(w), obtained for the four Morse oscillators MO1 to
MO4 with the projectorx and the appropriate exact ground state
Yo= Noz(we/xe— 1)/2ex'< _ E) (48) wave function in each case.
wpea=0(En/f) in the MO1 spectrum, which derives from
where the anharmonicity, has a very low intensity. The intensity of

this peak becomes larger for the oscillators MO2 to MO4, as
a result of the increasing anharmonicity. The opposite trend
is exhibited by the intensity of the second peak
[ @pea=1(En/h)], which becomes smaller going from MO1
and Ng is a normalization constant. The number of boundto MO4. The absolute maximum of the peak itself does not

z= (:—: exp(—ax) (49)

statesk is given by include any useful information. The physically relevant in-
formation is the integral under the peak, and the mean posi-
We tion of the peak. The peak widths depend on the Monte Carlo
k= Z_Xe (50 simulation parameters and on the maximum entropy analy-

sis, namely, orfi) the number of Monte Carlo samplps(ii)
the number of independent Monte Carlo rivisand(iii ) the
gpumber of eigenvalues used for the maximum entropy analy-
Sis[26)].

Typical parameters used in our Monte Carlo implementa-
tion are: At=0.002¢:i/E;,), N=3000, number of samples

3. They will be referred to as MO1 to MO4. MO1 is very _— . h .
similar to the harmonic oscillator, while MO4 is the most Fs)ir_nﬁ?;isg,)ijg%meter_100’ and number of independent

anharmonic oscillator, with only four bound states. In each
case we use the exact ground state wave function, the refer- V. CONCLUSION

ence energyE,=E,, and the projection operatoA=X.
Figure 6 shows the results of the maximum entropy analysigt
of the imaginary time evolution. We observe two peaks in
each spectrum, one atwp~0(En/7) and one at
wpea= 1(En/h). The peak atwpeq=1(En/f) is progres-
sively shifted to smaller values for the Morse oscillators
e e . ey s . T poson of e pes n ) speu,
. . wpeak ODtained from the imaginary time simulation is given in line
agreement between the analytical and the simulated Valu‘%é.)All values are given in atomic units.
for the positions of these peaks. The deviation between the

The projection operatorsA=x,x2, ..., nolonger project

onto only one or two higher eigenstates of the system as f

the harmonic oscillator case, but onto the whole manifold.
We use four different Morse oscillators defined in Table

We have presented a method for the calculation of excited
ate energies of quantum mechanical systems, based on an

TABLE lIl. Morse oscillator. Parameteid andD,, for the four
Morse oscillators MO1 to MO4lines 1 and 2, number of bound
statesk, ground state energl,, first excited state energy,, and
energy differencé&, — Eq (lines 3 to §. These are calculated ana-

simulated and the analytical results is less than 2% for all MO1 MO2 MO3 MO4
Morse oscillators. The two peaks in the spectrum for MOA4, —

the most anharmonic oscillator, are not clearly separ@teel  a §=02 ;=025 l-o 3=05
Fig. 6). The mean of the second peak given in Table Ill isD, 125 8.0 45 2.0
calculated usingv € [0.35(E/%),1.2(E,,/h)]. Although the  k 25 16 9 4
maximum entropy analysis does not separate these two peakg > =2 2 2
clearly, the spectrum does nevertheless show that there are

two different peaks in the spectrum, in agreement with anag 20 188 £ S
lytical predictions. In contrast, MO1 behaves almost like ag _ g 0.96 0.9375 08 0.75
harmonic oscillator. Thus the projectorprojects mainly on @ peak 0.974 0.941 0.895 0.782

the first excited eigenstate forst=y. The peak at
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imaginary time evolution of projected states that is per- The inverse Laplace transform was performed here by the
formed by a diffusion Monte Carlo algorithm, followed by a maximum entropy method. When there are many peaks in
numerical inverse Laplace transform. Our test applicationshe spectrum, this transformation can become problematic.
here are restricted to one dimensional problems, but the fafhis is the case if we use projectors suchkasr x° or trial
vorable scaling of the Monte Carlo formalism with the num- ygyve functionsyr, such that| ) is not close to an eigen-

ber of degrees of freedom makes this potentially a very usestate of the system. We can overcome this by making a ju-
ful tool for the treatment of many particle systems. Thegicious choice of the projection operators, in the following
app|icati0ns to the hal‘monic OSCi||at0r and to four Morsefashion_ We can Choose a Sequence of Suitab'e projection
oscillators of increasing anharmonicity studied here show agperators that allows us to extract energy differences step by
excellent agreement with analytical results. step. These projection operators can be used simultaneously

The input needed for this method is the Hamiltontdn i 3 single simulation, since the configurations created for
an analytical nodeless trial wave functigr, and an arbi-  the sampling of the multidimensional integration and for the
trary reference energl . The reference energy drops out imaginary time propagation are not affected by the projec-
in the final expression and affects only the numerical effition operator. Therefore the computational effort does not
ciency of the suggested algorithm. The reference energicrease significantly by using several projection operators
should therefore be close to the trial enefy. The best simultaneously. Then we can construct a set of spectra that
trial wave function is the exact ground state wave functioncan be compiled to constitute a complete spectrum charac-
In general a trial wave function close to the exact grounderistic for the system of interest. We expect to be able to use
state wave function is a good choice. The simulations prethese projection operators efficiently for the calculation of
sented here for the harmonic oscillator using two nonexacéxperimentally relevant excited states. A particularly inter-
trial wave functions show that the method gives good resultgsting class of projectors are those defined in a space-fixed
even if the trial wave function is not the exact ground statecoordinate system, which opens a path to rotationally excited
wave function. states.

The inverse Laplace transform of the imaginary time evo-  The experience gained with these first applications now
lution yields energy differences between the exact groun@pens the possibility to study more realistic systems. One
state and higher excited states of a system. Thus in order {§ossibility would be the treatment of van der Waals vibra-
calculate absolute excited state energies, the ground state &fbns. The investigation of vibrations of a system like a mol-
ergy of a system has to be known. One can, for examplescule embedded in a small Arcluster appears to be very
perform a standard DMC calculation, which gives the exacinteresting. Here we have a vibration of high frequency of
ground state energy and a representation of the ground stajge embedded molecule and vibrations of low frequency in
wave function in the form of a histogram. The information the Ar cluster. A model for this realistic test case is a two
on the ground state wave function provided by the standardimensional system where we use two coupled oscillators
DMC calculation could also be used for the construction Ofwith different eigenfrequencies_ The projection operator can
the trial wave function needed for the present method. Ihe chosen to be the coordinate of the first or of the second
particular symmetries are present in the system under invegscillator. This model application will give us evidence if it
tigation or if the construction of good approximations to ex-js possible to extract vibrations with very different frequen-
cited state wave functions is possible, the present methogies. The strength of the coupling between the two oscillators
could be combined with a fixed node approach. Exploitatiorcan be modified and the influence on the simulation can be

of symmetries could be used for the efficient calculation ofchecked. This investigation will be the subject of a forthcom-
specific subsets of the complete spectrum. In principle a reing publication.
weighting algorithm similar to the sidewalk technique em-
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